

Indian Computer Emergency Response Team (CERT-In)

Application Security Testing

OWASP Top 10

• Place to start for learning about application
security risks.

• Periodically updated

• What is OWASP?

– Open Web Application Security Project, a non-profit

worldwide charitable organization focused on
improving the security of application software.

• Good place to get started with application
Security.

• Developers have to learn from the mistakes of
other organisations.

• Executive have to think about management of
risk that application or software create in
enterprise.

• Approach application security as a people,
process and technology problem(app sec
requires improvement in all these area)

• Use owasp and other resources to establish
strong foundation of training, standards and
tools to make secure coding possible.

• Organization should integrate security into
their development, verification and
maintenance process

Owasp Top 10 is about top 10 Risks not about
common weaknesses.

Its not an application security program.

Aim of top 10 is to educate developers ,
designers, architects,managers and
organizations about the consequences of
important web application security weakness.

A1. Injection Flaws

Definition

• Injection flaws occur when un-trusted data is sent to an interpreter
as part of a command or query. The attacker’s hostile data can trick
the interpreter into executing unintended commands or accessing
unauthorized data.

• Various flavors of injection flaws: SQL, OS, LDAP to name a few.

Impact (Severe)

• Data loss or corruption

• Lack of accountability

• Denial of access

• In certain cases could lead to complete takeover of host

A1. Injection Flaws

Prevention

• Do not trust data from clients, validate all input.

• Use parameterized APIs whenever possible, e.g. SQL
prepared statements

• If parameterized API not available, use escaping
routines before sending data to the interpreter/shell.

A1. Injection Flaws

A2. Cross-Site Scripting (XSS)

Definition

• XSS flaws occur whenever an application takes un-trusted data
and sends it to a web browser without proper validation and
escaping. XSS allows attackers to execute scripts in the
victim’s browser which can hijack user sessions, deface web
sites, or redirect the user to malicious sites.

• Three types – stored, reflected, and DOM based XSS.

• The most prevalent web application security flaw.

Bad name given to a dangerous security issue

Attack targets the user of the system rather

than the system itself.

Outside client-side languages executing within

the users web environment with the same level

of privilege as the hosted site.

A2. Cross-Site Scripting (XSS)

A2. Cross-Site Scripting (XSS)

Impact (Moderate)

• Attacker can execute scripts in a victim’s browser, which can
open the door to:

– Hijacking the user’s session

– Defacing the web site

– Insertion of hostile content

– Redirecting the user to another site

– Attempting to install malware on the user’s machine

A2. Cross-Site Scripting (XSS)

Prevention

• Escape/encode all data that is written to a web page.

– <script>alert('got you');</script> (raw html)

– <script>alert('got you')</script> (encoded html)

• Do not trust data from clients, validate all input.

A3. Broken Authentication and Session Management

Definition

• Application functions related to authentication and session
management are often not implemented correctly, allowing
attackers to compromise passwords, keys, session tokens, or
exploit other implementation flaws to assume other users’
identities.

Impact (Severe)

• Such flaws may allow some or even all accounts to be attacked.

• Once successful, the attacker can do anything the victim could
do.

• Privileged accounts are frequently targeted.

A3. Broken Authentication and Session Management

Prevention
• A single set of strong authentication and session management controls. Such

controls should strive to:

– Meet the requirements defined in OWASP’s Application Security Verification
Standard(ASVS).

– Have a simple interface for developers. Consider the ESAPI Authenticator and User APIs
as good examples to emulate, use, or build upon.

• Strong efforts should also be made to avoid XSS flaws which can be used to
steal session IDs. See A2.

A3. Broken Authentication and Session Management

A4. Insecure Direct Object References

Definition

• A direct object reference occurs when a developer exposes a
reference to an internal implementation object, such as a file,
directory, or database key. Without an access control check or
other protection, attackers can manipulate these references to
access unauthorized data.

Impact (Moderate)

• Such flaws can compromise all the data that can be
referenced by the parameter.

• Unless the namespace is sparse, it’s easy for an attacker to
access all available data of that type.

A4. Insecure Direct Object References

A4. Insecure Direct Object References

Prevention
• Use per-user or session indirect object references. This

prevents attackers from directly targeting unauthorized
resources by knowing actual keys.

• Check access. Each use of a direct object reference from an
untrusted source must include an access control check to
ensure the user is authorized for the requested object.

A5. Cross-Site Request Forgery (CSRF)

Definition

• A CSRF attack forces a logged-on victim’s browser to send a
forged HTTP request, including the victim’s session cookie and
any other automatically included authentication information,
to a vulnerable web application.

• This allows the attacker to force the victim’s browser to
generate requests the vulnerable application thinks are
legitimate requests from the victim.

Impact (Moderate)

• Attackers can cause victims to change any data the
victim is allowed to change or perform many function
the victim is authorized to use.

A5. Cross-Site Request Forgery (CSRF)

A5. Cross-Site Request Forgery (CSRF)

Prevention
• Preventing CSRF requires the inclusion of a unpredictable token in

the body or URL of each HTTP request. Such tokens should at a
minimum be unique per user session, but can also be unique per
request.
– The preferred option is to include the unique token in a hidden field. This

causes the value to be sent in the body of the HTTP request, avoiding its
inclusion in the URL, which is subject to exposure.

• OWASP’s CSRF Guardcan be used to automatically include such
tokens in your Java EE, .NET, or PHP application. OWASP’s ESAPI
includes token generators and validators that developers can use to
protect their transactions.

A6. Security Misconfiguration

Definition

• Good security requires having a secure configuration defined
and deployed for the application, frameworks, application
server, web server, database server, and platform.

• All these settings should be defined, implemented, and
maintained as many are not shipped with secure defaults. This
includes keeping all software up to date, including all code
libraries used by the application.

A6. Security Misconfiguration

Impact (Moderate)

• Such flaws frequently give attackers unauthorized
access to some system data or functionality.

• Occasionally, such flaws result in a complete system
compromise.

A6. Security Misconfiguration

Prevention

• A repeatable hardening process that makes it fast and easy to
deploy another environment that is properly locked down.
Development, QA, and production environments should all be
configured identically. This process should be automated to
minimize the effort required to setup a new secure environment.

• A process for keeping abreast of and deploying all new software
updates and patches in a timely manner to each deployed
environment. This needs to include all code libraries as well, which
are frequently overlooked.

A7. Insecure Cryptographic Storage

Definition

• Many web applications do not properly protect sensitive data,
such as credit cards, SSNs, and authentication credentials, with
appropriate encryption or hashing. Attackers may steal or
modify such weakly protected data to conduct identity theft,
credit card fraud, or other crimes.

A7. Insecure Cryptographic Storage

Impact (Moderate)

• Failure frequently compromises all data that should have been
encrypted. Typically this information includes sensitive data
such as health records, credentials, personal data, credit cards,
etc.

A7. Insecure Cryptographic Storage

Prevention

• Considering the threats you plan to protect this data from (e.g.,
insider attack, external user), make sure you encrypt all such
data at rest in a manner that defends against these threats.

• Ensure offsite backups are encrypted, but the keys are
managed and backed up separately.

• Ensure appropriate strong standard algorithms and strong
keys are used, and key management is in place.

• Ensure passwords are hashed with a strong standard
algorithm and an appropriate salt is used.

• Ensure all keys and passwords are protected from
unauthorized access.

A8. Failure to Restrict URL Access

Definition

• Many web applications check URL access rights before
rendering protected links and buttons. However, applications
need to perform similar access control checks each time these
pages are accessed, or attackers will be able to forge URLs to
access these hidden pages anyway.

A8. Failure to Restrict URL Access

Example Attack Scenario
The attacker simply force browses to target URLs. Consider the following
URLs which are both supposed to require authentication. Admin rights are
also required for access to the “admin_getappInfo” page.

If the attacker is not authenticated, and access to either page is granted, then
unauthorized access was allowed. If an authenticated, non-admin, user is
allowed to access the “admin_getappInfo” page, this is a flaw, and may lead
the attacker to more improperly protected admin pages. Such flaws are
frequently introduced when links and buttons are simply not displayed to
unauthorized users, but the application fails to protect the pages they target.

A8. Failure to Restrict URL Access

Impact (Moderate)

• Such flaws allow attackers to access unauthorized
functionality.

• Administrative functions are key targets for this type of attack.

A8. Failure to Restrict URL Access

Prevention

• Select an approach for requiring proper authentication and proper authorization for each
page. Frequently, such protection is provided by one or more components external to the
application code. Regardless of the mechanism(s), all of the following are recommended:

– The authentication and authorization policies be role based, to minimize the effort
required to maintain these policies.

– The policies should be highly configurable, in order to minimize any hard coded aspects
of the policy.

– The enforcement mechanism(s) should deny all access by default, requiring explicit
grants to specific users and roles for access to every page

– If the page is involved in a workflow, check to make sure the conditions are in the proper
state to allow access.

•

A9. Insufficient Transport Layer Protection

Definition

• Applications frequently fail to authenticate, encrypt, and
protect the confidentiality and integrity of sensitive network
traffic. When they do, they sometimes support weak
algorithms, use expired or invalid certificates, or do not use
them correctly.

A9. Insufficient Transport Layer Protection

Impact (Moderate)

• Such flaws expose individual users’ data and can lead to
account theft.

• If an admin account was compromised, the entire site could be
exposed.

• Poor SSL setup can also facilitate phishing and MITM attacks.

A9. Insufficient Transport Layer Protection

Prevention
• Providing proper transport layer protection can affect the site design. It’s easiest to

require SSL for the entire site. For performance reasons, some sites use SSL only on
private pages. Others use SSL only on ‘critical’ pages, but this can expose session IDs and
other sensitive data. At a minimum, do all of the following:

– Require SSL for all sensitive pages. Non-SSL requests to these pages should be
redirected to the SSL page.

– Set the ‘secure’ flag on all sensitive cookies.

– Configure your SSL provider to only support strong (e.g., FIPS 140-2 compliant)
algorithms.

– Ensure your certificate is valid, not expired, not revoked, and matches all domains
used by the site.

– Backend and other connections should also use SSL or other encryption
technologies.

A10. Unvalidated Redirects and Forwards

Definition

• Web applications frequently redirect and forward users to
other pages and websites, and use untrusted data to
determine the destination pages. Without proper validation,
attackers can redirect victims to phishing or malware sites, or
use forwards to access unauthorized pages.

• A favorite target of phishers trying to gain the user’s trust

A10. Unvalidated Redirects and Forwards

Impact

• Such redirects may attempt to install malware or trick victims
into disclosing passwords or other sensitive information.

• Unsafe forwards may allow access control bypass.

A10. Unvalidated Redirects and Forwards

Prevention

• Safe use of redirects and forwards can be done in a number of
ways:

– Simply avoid using redirects and forwards, if possible.

– If used, don’t involve user parameters in calculating the destination.
This can usually be done.

• If destination parameters can’t be avoided, ensure that the
supplied value is valid, and authorized for the user.

Thank You

